Ionic strength effect on molecular structure of hyaluronic acid investigated by flow field-flow fractionation and multiangle light scattering.

نویسندگان

  • Bitnara Kim
  • Sohee Woo
  • Young-Soo Park
  • Euijin Hwang
  • Myeong Hee Moon
چکیده

This study describes the effect of ionic strength on the molecular structure of hyaluronic acid (HA) in an aqueous solution using flow field-flow fractionation and multiangle light scattering (FlFFF-MALS). Sodium salts of HA (NaHA) raw materials (∼2 × 10(6) Da) dispersed in different concentrations of NaCl prepared by repeated dilution/ultrafiltration procedures were examined in order to study conformational changes in terms of the relationship between the radius of gyration and molecular weight (MW) and molecular weight distribution (MWD) of NaHA in solution. This was achieved by varying the ionic strength of the carrier solution used in a frit-inlet asymmetrical FlFFF (FIAF4) channel. Experiments showed that the average MW of NaHA increased as the ionic strength of the NaHA solution decreased due to enhanced entanglement or aggregation of HA molecules. Relatively large molecules (greater than ∼5 MDa) did not show a large increase in RMS radius value as the NaCl concentration decreased. Conversely, smaller species showed larger changes, suggesting molecular expansion at lower ionic strengths. When the ionic strength of the FlFFF carrier solution was decreased, the HA species in a salt-rich solution (0.2 M NaCl) underwent rapid molecular aggregation during FlFFF separation. However, when salt-depleted HA samples (I = 4.66∼0.38 mM) were analyzed with FFF carrier solutions of a high ionic strength, the changes in both molecular structure and size were somewhat reversible, although there was a delay in correction of the molecular structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering.

The separation method, flow field-flow fractionation (flow FFF), is coupled on-line with multiangle laser light scattering (MALLS) for simultaneous measurement of the size and concentration of vesicles eluting continuously from the fractionator. These size and concentration data, gathered as a function of elution time, may be used to construct both number- and mass-weighted vesicle size distrib...

متن کامل

Conductivity-Dependent Flow Field-Flow Fractionation of Fulvic and Humic Acid Aggregates

Fulvic (FAs) and humic acids (HAs) are chemically fascinating. In water, they have a strong propensity to aggregate, but this research reveals that tendency is regulated by ionic strength. In the environment, conductivity extremes occur naturally—freshwater to seawater—warranting consideration at low and high values. The flow field flow fractionation (flow FFF) of FAs and HAs is observed to be ...

متن کامل

Analysis of self-assembled cationic lipid-DNA gene carrier complexes using flow field-flow fractionation and light scattering.

Self-assembled cationic lipid-DNA complexes have shown an ability to facilitate the delivery of heterologous DNA across outer cell membranes and nuclear membranes (transfection) for gene therapy applications. While the size of the complex and the surface charge (which is a function of the lipid-to-DNA mass ratio) are important factors that determine transfection efficiency, lipid-DNA complex pr...

متن کامل

Field-flow fractionation of proteins, polysaccharides, synthetic polymers, and supramolecular assemblies.

This review summarizes developments and applications of flow and thermal field-flow fractionation (FFF) in the areas of macromolecules and supramolecular assemblies. In the past 10 years, the use of these FFF techniques has extended beyond determining diffusion coefficients, hydrodynamic diameters, and molecular weights of standards. Complex samples as diverse as polysaccharides, prion particle...

متن کامل

Size characterization of liposomes by flow field-flow fractionation and photon correlation spectroscopy. Effect of ionic strength and pH of carrier solutions.

The effect of ionic strength and pH of carrier solutions on the separation of liposomes by flow field-flow fractionation (flow FFF) has been studied for the determination of accurate vesicle size distribution of liposomes. Retention behaviors of liposomes (PC/PG/cholesterol) are observed in typical buffer solutions (PBS and Tris-HCl) of various ionic strengths as carrier liquids in flow FFF. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical and bioanalytical chemistry

دوره 407 5  شماره 

صفحات  -

تاریخ انتشار 2015